Climate Science and Global Climate Change

Session 5

- Consequences of global warming
- *IPCC* Goals
- Future temperatures?
 - Adaptation and Mitigation
 - Challenges and Positive Trends

Spring 2018 *Univ. of Arizona OLLI* Lockwood Carlson PhD

Tipping points, non-linear processes, exponential events:

disaster, catastrophe, end-of-the-world, "OMG", the sky is Glowing

Potential climatic tipping elements affecting the Americas

U.S. Global Change Research Program https://science2017.globalchange.gov/chapter/15/

Candidate Climatic Tipping Element	State Shift	Main Impact Pathways	
Atmosphere–ocean circulation			
Atlantic meridional overturning circulation	Major reduction in strength	Regional temperature and precipitation; global temperature; regional sea level	
El Niño–Southern Oscillation	Increase in amplitude	Regional temperature and precipitation	
Equatorial atmospheric superrotation	Initiation	Cloud cover; climate sensitivity	
Regional North Atlantic Ocean convection	Major reduction in strength	Regional temperature and precipitation	
Cryosphere			
Antarctic Ice Sheet	Major decrease in ice volume	Sea level; albedo; freshwater forcing on ocean circulation	
Arctic sea ice	Major decrease in summertime and/or perennial area	Regional temperature and precipitation; albedo	
Greenland Ice Sheet	Major decrease in ice volume	Sea level; albedo; freshwater forcing on ocean circulation	
Carbon cycle			
Methane hydrates	Massive release of carbon	Greenhouse gas emissions	
Permafrost carbon	Massive release of carbon	Greenhouse gas emissions	
Ecosystem			
Amazon rainforest	Dieback, transition to grasslands	Greenhouse gas emissions; biodiversity	
Boreal forest	Dieback, transition to grasslands	Greenhouse gas emissions; albedo; biodiversity	
Coral reefs	Die-off	Biodiversity	

https://scie nce2017.glo balchange.g ov/chapter/ 15/

Double whammy

Warmer air and cliff collapse could lead to rapid sea level rise

Antarctic Ice Sheets

How Hansen's model predicts sea level will rise

Salt water is denser than fresh water. Because of this, a mixed layer of salt water and fresh water could float above warm salt water, trapping it below ice.

Mixed fresh and salt water

Warm salt water

Fig. 18. Schematic of stratification and precipitation amplifying feedbacks. Stratification: increased freshwater flux reduces surface water density, thus reducing AABW formation, trapping NADW heat, and increasing ice shelf melt. Precipitation: increased freshwater flux cools ocean mixed layer, increases sea ice area, causing precipitation to fall before it reaches Antarctica, reducing ice sheet growth and increasing ocean surface freshening. Ice in West Antarctica and the Wilkes Basin, East Antarctica is most vulnerable because of the instability of retrograde beds.

Ice Melt, Sea Level Rise and Superstorms: Evidence from Paleoclimate Data, Climate Modeling, and Modern Observations that 2°C Global Warming is Dangerous, preprint 2016

Net retreat of Antarctic glacier grounding lines

Between 2010 and 2016, 22%, 3% and 10% of surveyed grounding lines in West Antarctica, East Antarctica and at the Antarctic Peninsula retreated at rates faster than 25 m yr^{-1} (the typical pace since the Last Glacial Maximum) and the continent has lost 1,463 km² ± 791 km² of grounded-ice area. Nature Geoscience (2018) 02 April 2018

Fig. 1: Rates of grounding-line migration between 2010 and 2016 along the Antarctic grounding line ⁸ derived from CryoSat-2 and bedrock topography ²⁴ observations.

Observed changes in annual, winter, and summer temperature (°F). Changes are the difference between the average for present-day (1986–2016) and the average for the first half of the last century (1901–1960 for the contiguous United States, 1925–1960 for Alaska and Hawai'i). Estimates are derived from the nClimDiv dataset. , (Figure source: NOAA/NCEI).

Southwest US Climate Change

Megadrought Risk: Ault et al., Sci. Adv. 2016;2: e1600873 5 October 2016

Fig. 4. Maps of megadrought risk for the American Southwest under different levels of warming, and the required in σ ease in precipitation to compensate for that warming. (A to C) Maps of megadrought risk for the entire American Southwest domain at constant (historical) precipitation climatology ($\Delta P = 0\%$) and various levels of warming. These estimates are based on the Monte Carlo procedure of observational and reanalysis data, not on CMP5 (see Materials and Methods). (D to F) Increases in precipitation (blue shading) needed to maintain megadrought risks below 50% for different levels of regional warming. Contours map the projected changes in precipitation derived from the multimodel CMIP5 mean and are shown for reference at each level of temperature change.

Projected Temperature Increases

http://nca2014.globalchange.gov/report/regions/southwest

Urban Heat and Public Health

The projected increase in heat waves in Southwest cities increases the chances that a chain of escalating effects could lead to serious increases in illness and death due to heat stress. The top of the figure provides some of the links in that chain, while the bottom of the figure provides adaptation and improved governance options that can reduce this vulnerability and improve the resilience of urban infrastructure and community residents.

nca2014.globalchang e.gov/report/regions /southwest

Future climate projections

<u>Climate impacts</u>:

- Global surface temp.
 - Sea surface temp.
- Sea level rise, sea ice extent
 - Ocean pH
 - Precipitation
 - Regional climate
 change

How does the climate depend on atmospheric CO2 concentrations?

Possible <u>scenarios</u> for global GHG emissions up to year 2100

Some consequences of greenhouse gas emissions:

<u>Climate impacts</u>:

- Global surface temp.
 - Sea surface temp.
- Sea level rise, sea ice extent
 - Ocean pH
 - Precipitation
- Regional climate change

Littoral flooding Long term droughts Agricultural disruption Extreme weather events Species extinction ?

Human diseases increase Clean water shortages Food scarcity Major economic disruptions Population displacements Wars

Source: Munich Re Geo Risks Research 2016

U.S. Global Change Research Program Climate Science Special Report 2017

CLIMATE CHANGE 2014: IMPACTS, ADAPTATION, AND VULNERABILITY

Most places will continue to get warmer, especially at								
night and in winter. The temperature change will benefit								
some regions while harming others - for example, natterns of								
tourism w	i Sea lev	Sea levels will continue to rise for many						
health a	r centur	enturies. The last time the planet was 3°C warmer than ow, the sea level was at least 6 meters (20 feet)						
food sup								
and extrem directly had and a pres	higher. millions Shangha generati ruinousl	Weath intensifie regions n (because regions v	ed water cy ow subiec Ecosyste agricultur	erns will keep changin vole with stronger floods a t to droughts will probabl ems will be stressed, ral and forestry systems m	and drought vget drier although so night benefit	s. Most me man : in the fi	rst decades	
		will get n will get n winter sr supply sy	that canner systems independent of climate change. Some crops will be diseases a fertilized, as will some invasive weeds (the balance of benefit vs.					

Econometric Forecasts

CARBON'S COSTLY LEGACY

Economic models of climate change project that resulting damage worldwide (**A**) will increase with future emissions and may cost several per cent of global gross domestic product (GDP) with the warming expected by 2100. Uncertainties in future socio-economics, emission rates and climate impacts result in a range of estimates of the social cost of carbon, which is also affected by the choice of 'discount rate' used to convert future harms into today's money (**B**).

*Shaded regions indicate 5% and 95% confidence intervals for FUND 3.8 and PAGE09, and a high-low range for CRED 1.4.

10 APRIL 2014 | VOL 508 | NATURE | 173

The Global Commons

The seas and the atmosphere belong to all of humanity.

Paris COP21: the IPCC Agreement

Nations Unles Conférence sur les Changements Climatiques 2015 COP21/CMP11 Paris, France SECRETAIRE PRESIDE PARIS2015 UN CLIMATE CHANGE CONFERENCE COP21. CMP11 C

Getting to "YES"- Paris COP21 December 2015 Paris Agreement (+ Annex)

197 countries 18 years since first *Kyoto* agreement Voluntary emissions reductions Phased in over several years- not specified Includes periodic 'stock-taking' with full transparency (starts in 2023) "common but differentiated responsibility" (not 'liability') Strong voice for developing countries Strong voice for small island nations Inclusion of *sustainable development* context for actions Includes need for initial payments to developing countries- \$100 Billion

Legally binding parts and 'decisions' (ambitions and goals) Opened for signature in April 2016 Paris Agreement Status:

- 175 countries (out of 197) have ratified
- Entered 'force' November 2016 (ratified by countries accounting for 55% of global CO2 emissions)

http://unfccc.int/paris_agreement/items/9444.php

Country	CO ₂ emissions (kt) in 2014 ^[2]	Emission per capita (t) in 2014 ^[3]
World	35,669,000	5.0
<u>China</u>	10,540,000	7.6
United States	5,3 34,0 0 0 '	16.5
European Union	3,415,000	6.7
<u>India</u>	2,341,000	1.8
Russia	1,766,000	12.4
<u>Japan</u>	1,278,000	10.1
<u>Germany</u>	767,000	9.3
International Shipping	624,000	—
Iran	618,000	7.9
South Korea	610,000	12.3
<u>Canada</u>	565,000	15.9
Brazil	501,000	2.5
Saudi Arabia	494,000	16.8
International Aviation	492,000	

https://en.wikipedia.org/wiki/List_of_countries_by_carbon_dioxide_emissions

Mitigation: *reducing* emissions

Governments agreed:

 long-term goal global average temperature to well below 2°C above preindustrial levels;

•Aim to limit the increase to **1.5°C**

• **global emissions to peak as soon as possible**, recognizing that this will take longer for developing countries;

- rapid reductions thereafter
- National climate action plans These are not yet enough to keep global warming below 2°C, but the agreement traces the way to achieving this target.

IPCC Temperature Goals

Figure SPM.9 | Projections of global mean sea level rise over the 21st century relative to 1986–2005 from the combination of the CMIP5 ensemble with process-based models, for RCP2.6 and RCP8.5. The assessed likely range is shown as a shaded band. The assessed likely ranges for the mean over the period 2081–2100 for all RCP scenarios are given as coloured vertical bars, with the corresponding median value given as a horizontal line. For further technical details see the Technical Summary Supplementary Material {Table 13.5, Figures 13.10 and 13.11; Figures TS.21 and TS.22} http://www.ipcc.ch/report/graphics/index.php?t=Assessment%20Report

<u>s&r=AR5%20-%20WG1</u>

COP21 December 2015

The Paris "Bubble"

'Targets' or 'Goals' or Aspirations (or hopes)?

Scientist/Activist comment on Paris Agreement:

Paris. "Shameless preplanned back-slapping accompanied a Paris climate accord that guaranteed nothing except continued high fossil fuel emissions. Low oil and gas prices afforded a golden opportunity to introduce a rising carbon fee, the only practical way to achieve honest pricing of fossil fuels. However, such a simple honest approach without any giveaways to special interests was dismissed as being too complex to be considered. Instead continued low fossil fuel prices will spur construction of more fossil fuel infrastructure with lock-in of high future emissions."

James Hansen 29 December 2015

Emissions targets to cool a warming planet

Even if all countries hit their targets under the Paris agreement, global

Paris climate goals mean emissions need to drop below zero

Bioenergy to the rescue?

The trouble with negative emissions

By Kevin Anderson and Glen Peters

14 OCTOBER 2016 VOL 354 ISSUE 6309 page 182 sciencemag.org SCIENCE

Goal: keep global warming to 2 C by 2100 "Ambition" to keep below 1.5 C How to get to the goal?

The <u>implicit scenario</u> by the Agreement: deep and rapid decarbonization (coal, oil, gas reductions) and, by 2050, *BECCS* (biomass energy carbon capture and storage) with negative CO2 emissions thereafter.

Science and technology done by politicians, bureaucrats, and diplomats (!)

Realistic but challenging scenario: "**early** reductions in energy demand with rapid substitution of fossil fuels by zero-carbon alternatives frames a 2 °C agenda that does not rely on negative emissions." (Kevin Anderson)

- Canada, Mexico and a coalition of 15 US State Governors signed a Joint Declaration to jointly strengthen climate action. California, Washington, New York, Oregon and Virginia are among the US state signatories. A new North American Climate Leadership Dialogue to address topics such as clean transportation, carbon pricing initiatives and reducing short-lived climate pollutants.
- The EU, China and California announced on 14 November they will step up cooperation on carbon markets.
- A further 25 national and subnational jurisdictions have signed on to the UK and Canada's alliance to phase-out coal in their energy systems.

Adaptation + Mitigation Synergies

Adaptation

Forest protection

Land use changes, Relocation

Infrastructure & Building design

Flood mitigation

Emergency Response

Business Continuity plans

Community engagement

Green Infrastructure

Distributed Energy

Resilient Urban Transport

Water & Energy Conservation

Building Weatherization

> Low-input agriculture

Mitigation

Energy Efficiency

Renewable energy

Combined heat & power

٠

Sustainable transportation

Methane capture and use

Industrial process improvements

Carbon sinks

7 100-1-1-1-- 301C

Key <u>climate science</u> uncertainties in future estimates:

- Role of low and high altitude clouds in warming and cooling
- Effects of aerosols on warming or cooling the atmosphere
- Heat dynamics of the oceans and their currents
- Ice shelf feeding sea level rise and weather patterns: Antarctica and Greenland
- *"Climate Sensitivity"*: warming induced by a doubling of the CO2 levels

Future Climate

Global CO2 emissions by 2050 +? Technological innovation in energy and mitigation? Energy and climate policies of nation states?

> *Climate science uncertainties*

Energy-related carbon dioxide (CO2) emissions by country or region (2012-40) billion metric tons

eia

http://www.eia.gov/todayinenergy/detail.php?id=26252

Big Problems with Coal

- Air pollution
- Water pollution
 - Acid rain
 - Particulates
- Environmental destruction

+ Carbon Dioxide emissions

Since the start of this course 4 weeks ago, we have added 1 gigaton of carbon into our atmosphere.

2,000,000,000,000 pounds.

Domain of expertise	Physical and biological sciences	Technology and engineering	Economics	Private sector- business & NGOs	Governments and UN
Climate measurements - past and present		\checkmark			
Causes and driving forces		✓			
Estimates of future climate					
Physical consequences					
Warming rate reduction options					
Remediation options					
Financial instruments					

What can be done activate 'the commons' for action on climate change?

United Nations actions- IPCC Multipartite treaties Providing compelling technological options Moral suasion by leading global powers Financial incentives The *pivotal role* of the United States in mitigation of global warming

US engagement with the world through the IPCC

US *leadership* including

- Climate science research- NASA, NOAA, EPA, Universities
- Eliminate COAL; backfill with natural gas
- Clean technologies- <u>advanced nuclear</u>, solar, and wind
- 'Electrification', especially <u>electric vehicles</u>
- Improved energy efficiency
- Carbon tax (fee)

Reasons for Contingent optimism

- Rapid advances in climate science: modeling, understanding of ocean heat and clouds, regional effects, sensors and measurements
- US and EU carbon emissions rates levelling
- Indicators for China reducing emissions growth
- Reduced 'energy intensity' globally- increasing efficiency of HVAC, appliances, etc.
- <u>Advanced nuclear reactor developments</u>
- Growth of wind and solar energy sources
- Coal declining in the developed world
- Public awareness and support increasing

The Global Commons

The seas and the atmosphere belong to all of humanity.

The lands belong to sovereign states.

The CHALLENGE faces us all:

how can all of us <u>reduce</u> greenhouse gas emissions to mitigate the global consequences of climate change?